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HIGH-FREQUEISCY ASYMPTOTICS OF SOLUTION 

OF THE NONLINEAR PROBLEM NEAR A CAUSTIC* 

UUC.533.6 

S.M. MANUKIAN 

The determination of parameters of motion of nonlinear dispersinginhomogeneousmedia 
is consideredinthe case ofquasi-simpleharmonicsmallamplitudewavesnearacaustic. A 
nonlinearequationis obtainedforhigh-frequencyasymptoticsof waveamplitude in an 
arbitrary weakly nonlinear dispersing nonhomogeneous medium, which is in essence an 
ordinary second order differential equation which in the linear case becomes the 
Airy equation. This confirms the validity of standard solutions /l/ for dispersing 
linear media and simple harmonic waves. 

Equations are derived here on the assumption of smooth variation of wave parameters,which 
ispossiblefor media with cubic nonlinearity or for those with weak quadratic nonlinearity 
with strong dispersion. Unlike in the case of media with quadratic nonlinearity in which the 
equation of short waves is valid near a caustic /2 -5/, an ordinary nonlinear differential 
equation whose solution has different properties for stable (defocusing) and unstable (focus- 
ing) media, is obtained for smooth quasi-simple harmonic waves in cubic media. 

The Airy function was used in /l/ for deriving a solution near a caustic of an arbitrary 
linear hyperbolic system with variable coefficients for a time periodic wave. A linear solu- 
tion was obtained in /6-E/ for unsteady simple harmonic waves near the caustic.Thatsolution 
at the caustic has a singularity whose elimination necessitates obtaining simplifiednon- 
linear equationsofshort waves and finding their solutions /2/. Equations near a caustic in 
nonlinear formulation for unsteady low intensity waves were obtained in /3,4,9/. A numerical 
solution of the nonlinear problem appears in /S,lO,ll/. Equations for periodic shock waves 
and methods of their solution are given in /12/. Investigation of waves, close to simple har- 
monic, near a caustic when variation of wave amplitude and phase is smooth prior discontinuity 
formation is also of interest. General modulation equations for such waves were obtained in 
/13-16/. In deriving the modulation equation it is possible to assume, as in geometric 
optics, the basic wave frequency to be high /15 and 16/, which is equivalent to the assump- 
tion of slow variation of amplitude and phase< 

1. Derivation of nonlinear equations. Let us obtain the equations for slow varia- 
tion of amplitudes on phases of a quasi-simple harmonic wave near a caustic. The obtainedin 
/l/ linear solution near a caustic depends on two variables /1,3,6-E/ 

.i.* = (x - x")k, y = (x - x")N (1.1) 

where k = {a,}, j = 1, 2, 3,. . ., n is the vector of the normal to the wave at point A of ray 
tangency to the caustic surface, N is the unit vector of the normal to the caustic at point 
A directed toward its concavity, y is the distance of point x frun the caustic, Z* is the 

time of wave run along the ray fran A to point I, and x0 is the radius vector of point A. 
The solution implies the following orders of smallness of parameters: 

x* - a.'/*, y--e (1.2) 

where for a step-wave e -7‘ls and 'y is the wave intensity away fran the caustic. 
As in /1,13/, we consider a high-frequency asymptotics of the problem. Let in a linear 

formulation the medium be defined by the equation 

A(ipt,-ipJ,x)@ -0, pt=&=-&T++ge pJsaj&+NJ$ (1.3) 

where A is some linear operator with variable coefficients of the form of a polyncmial of 
n-th power. 

In accordance with (1.1) the second term in pt is unessential. Expanding A in powers 
of small operators N#&,(1 + az+lat)~laz* and retaining only higher derivatives, we obtain 
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A (ip, - ipj,x) = A (-ia/az *,- ia$ldx*, x0)@ + L, + -&, + &a! + L,, + I'ey 

L, = $ (Q - ,rPo), 
k 

L1, = iA_u,ee (Q - .Q’) $ -& 

1 
2 a* x.~ 

i1.4) 

where the subscript at the operator A denotes differentiation, for instance A_i,,,,w = aA/d (- 
itUt?x*). 

Let us set in conformity with /15/ @ = $eia'x* which is in agreement with the linear sol- 
ution near a caustic and where o is the unperturbed wave frequency. From this follows that 
A - #, A0 - (,$'-I, o-a-y* /15/. We omit in L,, and the second term in L,, since they are 
of a higher order of smallness sSS-gn,p than the remaining terms of order sl-S",* . We also 
omit in (1.4) terms of order a%'-?/2 obtained by the action of operators on variable coef- 
ficients. Taking into account the dispersion relation at point A, the equality A (co, aj, x”) = 

and the relation Nj4,= 0, we obtain for a slowly varying amplitude 9 the expression 

e-iox*Ad, = _ +,& (rj - ry) (f$ - 2) - Y& Aai*aj*NiNj $$ 

where the ray equation is used 

dr, dt da.* 
-&-=a?, ds -=- 0) A + = - Axi, aj* = aj& “j =g 

(1.5) 

(1.6) 

On the basis of (1.1) we set ri - ri" = yINi - y,ajN~AaJ(arA,,) . Using the notation 

we obtain 

hl= - WA, [Nj 

from which and (1.5) we have 

d2'#Idy~z-Xy~~=0, x=2hi/(Aai*aj+NiNj) f1.7) 

The solution of Eq.(1.7) near a caustic expressed in terms of Airy's function u(y) /12/ is 
of the form 

'p = Kv (ye) exp [in (k/2 + S/,)l, y, = ylx"s, K = Bo (1.8) 

where the constant B which defines the ray solution away from the caustic is 

& = (-io)-k-‘B (-y,)-‘kexp [‘Vsi (-yl)‘~l 

For deriving the nonlinear equation which defines the slow amplitude variation in con- 
formity with the method used in the theory of modulation /13/, we apply the nonlinear disper- 

sion formula obtained by varying the Lagrangian 

L” = 1 L dz at 

averaged over the amplitude. It should be noted that taking into account the quadratic non- 
linearity near a caustic in unsteady nonlinear problems as was made in /9,10,15/ for slowly 
varying amplitudes in a nondispersing medium, does not result in nonsero additions in (1.7). 
In the case of a dispersing medium with quadratic nonlinearity, for example of the coeffic- 

ient of dynamic viscosity (KDV) in the nonlinear dispersion formula, a nonzero nonlinear term 
is generated /15/. To take the latter into account we write /13,15/ the nonlinear dispersion 
formula which is valid in theslowmodulation region, i.e. away from a caustic, as 
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(1.9) 

where F is the eikonal, and k" = {all} is the value of vector k at point A. The constant 

0.x is the same as 0 in (1.5). 
Using (l.lf, the definition of a$ + in (1.61, the dispersion equation A -w --o,(CC~, sJ) 

for the nonlinear problem , and Eq.U.6) for rays, we obtain 

(1.10) 

which is the nonlinear equation for the perturbed phase rp, 
Let us assume that unlike in the linear solution 4 also depends on z*. Then the ap- 

plication in (1.4) of the first operator to the product @ *ocr* in its right-hand side, retain- 
ing only the first derivatives with tespect to 9, yields 

oAr+ajAa. 
J. w - (we imti (1.11) 

0) 

The right-hand side of (1.5) is then supplemented by the term io-'(@A,$- a,&;) x &$/8x*, 
and if (1.11) is also to be of order el-":a, it is necessary to set @&r* -1p&. In the 
case of nondispersing media for which A is a hcmogeneous function that term is zero. This 

occurs, for instance, for a conducting medium considered below. In a linear problem the ad- 
dition of this term corresponds to the substitution for Airy's function of the function 

which satisfies the equation 

Pvl@/,'- y*u- tivldn = 0 

Since t* -l/K& &@ - i, hence r - 1, and we assume that nz0, which corresponds tothe 
rejection of the term (1.11). 

We set in (1.5) 4 = ae'q, equate the right-hand side to zero , and separate the realpart 
of the obtained equation. Thus: 

sitting the diffraction term B'a&' and canparing with Eq.(l.lO), we obtainnear thecaustic 
a nonlinear equation of the form 

(1.12) 

For a defocusing medium a&$>0 , hence near the caustic Bq.fl.12) assumes the form 

Since in the linear problem by virtue of (1.8) 
problem 1 lpl I* = h*. 

*x is real, we set in 
The linear asymptotics for * is of the form 

h = Klr-'v (3 

Away from the caustic we seek a solution of Eq.Q.131 by the method of 
amplitudes and phases: after separating real and imaginary parts, we obtain 

(1.13) 

the nonlinear 

(1.14) 

slowly varying 
equations 
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dcp 2 
ady, ( ) -$+yy,a+a3=0, as+2$--$-=O 

* * U.153 

Rejection of the diffraction term away*8 yields the nonlinear dispersion formulas; further 
rejection of the nonlinear term 6 yields an equation whose solution for large in absol- 
ute value negative y, is given by asymptotics (1.8). Coefficients of Eqs.(l.lZ) depend on 
specific media. 

lo. Let us determine the coefficients of equations of electrodynamics of slender beams. 
We write the equation for the electric field intensity E on the assumption that s,a* 4 I?, 
as /13/ 

(1.16) 

whose solution for a monochromatic wave is of the form 

E = (ueO exp (--lx) + cre, exp (I?)), k = o~&,&/at = -4, 8-&z, = aI*, E = (El+ E&2 

where e, is the unit vector of linear polarization, V is the Hamiltonian o = 1 E,I, c is the 
speed of light, x is the eikonal, e0 and eo(i+~lEX/') are, the refraction indices in the 
linear and nonlinear problems, respectively. We select a linear dispersion formula of the 
form 

Then 

A -'is * a,* = - ce, aj la, A,i*~j*NiNj _ - c”/(~ooo) 

a: I i3ap = -4,eloo < 0, I, = --o I R 

R-1 = R;’ -RF’, a = (a12 + a** + a@* 

where R,-’ is the projection of the ray curvature vector on the normal to the caustic, 
is the projection of the vector of curvature of the respective surface ray on the normal 
the caustic. Equation (1.12) assumes the form 

which relates 
equation 

2O. For 

RI’ 

to 

(1.17) 

to a focusing medium in which (adaay,, < 0. Then, instead of (1.13) we havethe 

d% dy*'-Y&l+w= 0, p = (um., wa4,,iP (1.18) 

waves on the surface of a deep wave we obtain a nonlinear dispersion relation 
of the form /14/ 

a8 = ga* (i + cz*%'), a* = (01x1 + C+')" 

where o is the fluid surface elevation amplitude and g is the acceleration of gravity. The 

coefficients of Eq.(1.12) can be specified similarly. The linear dispersion equation has the 
form A=oO-_)/Ba' and then 

and Eq.(1.12) can now be written as 

(1.19) 

Thus Eq. (1.19) relates to a defocusing medium and reduces to the form (1.13). 

3O. For waves on the surface of water of finite depth h, the nonlinear dispersion rela- 

tion is of the form /13/ 

(1.20) 
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To== a(&), o,,‘(k) == gk th(kk,), co = o;(e), q = 2 

As shown in /13/, e,'<O,&>O when kk,>i,30 and &<O when kk, < iv%. Thus for 

waves over deep water W/W)-> o andthereis transverse stability of the wava /16/. The 
medium is defocusing relative to transverse perturbations, i.e. near a caustic the equation 
reduces to (1.13), while for shallow water (ao/&+)_<O, the medium has focusing properties, 
and Eq.(l.lB) holds. 

4O . Let us determine the nonlinear dispersion relation for waves on the surface of in- 
finitely deep water covered by a thin elastic plate. For simplicity we take into account only 
the physical nonlinearity defined by the nonlinear shear modulus YlG, where G is the 
linear shear modulus /17/.TheLagrangian Lis represented in the form of sum Lo+&, where 

L0 and L1 are, respectively, the Lagrangians for water and plate. Representing, as in /13/, 
water elevation in the form of quasi-simple harmonic waves k' = 4 cosr+ b con T, introducing 
the averaged Lagrangian 

and varying L* with respect to 4, as in /la/, we obtain 

(1.21) 

T E ygGh’lE(l-v+v~)* 
w (i -v)’ 

+-+W(3-F) 

up (k) = 
6gp’ (1 - v) + ChW 
6 (1 - VI (ph + c-9 

*= PW (k) 
~p'-8~'(I)+l66k*kr(l-v)y3 

where e4 is the frequency in the linear problem, p' and p are densities of water and plate, 
respectively, h is the plate thickness, and v is the Poisson's ratio. 

when d=-0, we have for the plate the nonlinear dispersion equation 

For an incompressible plate for which v=V, formula (1.22) was obtained in /la/. Since 
for metal plates ~4 < 0 /17/, hence <O, i.e. the medium has focuaing.properties 
/lS/. 

(a~/a4~)4, 
It is interesting to investigate the dependence of (aeIa44), on the values of E-G/ 

(&~'),ng kk. Computations were carried out for fixed v,=iW,E =iOI,E=lWand y,= -W,E= W.E= 
Wfor kh varied from 0 to 0.5. In the first variant with v,= --iD,E=10),(&~/&+)<0 was 
obtained everywhere, except for kh- 0, where (80la44)_, = 0.25. In the second variant (eel 
44')- changed its sign when kh was increased. The dependence of q= (8~~/84~,~(g~)-)-l on 
khy5 shown in Fig.1. It will be seen that for O<kh<O,Zi the medium has defocusing 

properties relative to transverse oscillations and 
focusing ones when kh>0,21. It should be pointedout 
that formula (I,= 44 'e has any meaning only away from 
a caustic, where the incident and the reflectedwaves 
separate, while near a caustic Rqs.(1.13) and (1.18) 
are to be solved by linking for large IP.1 the values 
of $,1 with the linear asymptotic (1.8). 

Fig.1 

2. Statement and solution of the boundary value problem. Let us find the solu- 
tion of Eq.(1.18) or (1.13) when 1 qpl I* = qpl* near a caustic for a given asymptotic (1.8). 
Rquations (1.13) and (1.18) are equations of Painlev6 and have two mobile singular points /19/. 
Hence if the Cauchy condition is specified at point 14 = -5, which we assume fairly distant 
from a caustic, the problem of initial conditions has no continuous solution. Numrical corn- 
putation shows that the solution of the Cauchy problem rapidly approaches 04. The boundary 
value problem for segment i-5, 51 can be taken a8 an upproximate substitution for the problem 
stated at the beginning of this Section. 
formity with the linear solution (1.8). 

At the end of that segment & is defined in con- 
The problem for the second order differential equa- 

tion is thus solved. 
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9," = y~l, k $13, $,- = Kd-;p, qI+ = h‘v+/l.~ , f-= f (-5), f' = j (.mt5) (2.1; 

where v(y) is the Airy function and h' = const. By this we also stipulate that the solution 
of Eq.(2.1) must merge at boundaries with the linear solution. To obtain homogeneous bound- 
ary conditions we use the notation I#* = I@,-- Kv(y)/p with which the input problem (2.1) 
assumes the form 

*" 9 = $"y -J-(9* + Ku/pJ3, $*-= $*+ = 0 (2.2) 

whose solution we seek in the form 

++=+ f G(Y,~) [J”(E) i- +)]‘d5 
-5 

where C (y, E) is the Green's function that satisfies the equation G" = YG + 6(y - t) in 
which iJ denotes the delta function. We split function G into two parts 

-5 <Y < E, G (Y, E) = %* (Y, 5) 

E < Y < 5, G (Y, 5) :I= $a* (Y, E) 

where I&* are solutions of the linear problem. We obtain these by the method of indeter- 
minate coefficients 

Relations 

*I* (E, E) = *a* (El E), %*' (51 E) - *I*' (EV E) = 1 (2.4) 

are valid for functions &*, qa*. 
Using formulas (2.4) and the boundary conditions, we obtainforcoefficients cl, cl*, CZ, CZ* 

the following expressions 

Cl = d-l [--p,u+u- + pev+u-I, cl* = d-l [pzu+u- - p,u+d-I 

c - d-l[--p,u+u~- + plu+u-], c2* = $1 [p&-v+ - p,u+v-I z- 

d = u’v- + u-v+, pl = u (EVw (8, P2 = v (5)/w (5) 

w (El = 24 (8 v’ (El - v (Eb’ (8 

Function (2.3) satisfies Eq.(2.2). The solution of the differential equations thus 

reduces to the solution of the following integral equation: 

which is solved by the improved method of successive approximations /20/ with the linear 

Fig.2 

solution taken as the zero approximation. Computation results for a focusing medium areshown 

in Fig.2, where curve 1 corresponds to solution $J(Klp) for K/p = 0,4 and curve 2 for 

K/p = 0,5. Curves 1-4 in Fig.3 were calculated for a medium with defocusing properties. 
These curves correspond to KIp = 0,4; 0,5; 0,7; l,O, respectively. The linear solution is shown 
in Figs.2 and 3 by dash lines. Note the good agreement with the nonlinear solution for y= &5. 
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These results show that the nonlinearity introduces marked changes in the intensity distribu- 
tion along the normal to the caustic at transition form the region of li*t to thatofshadow. 
In the linear problem these changes are fairly smooth. An abrupt change of solution on the 
wave of the "soletone character" occurs in the nonlinear problem /16/, and the bursts in the 
case of a defocusing medium (Fig.31 are smaller than in the case of focusing one (Fig.2). 

3. On the absence of branching of the boundary value problem solution. 
Let us prove the uniqueness of the solution of the boundary value problem (2.1) when c is 
fairly small. Using the notation rp* = Kr+dc, 8~ + (K/p)* we reduce (2.2) to the form 

'P'= Y(P + c (cp + v)a, 'p ly3c = cp lr_b = 0 (3-l) 

In investigating the uniqueness of solution we use the results of /12/ according to which it 
is necessary to consider for Eq.(3.1) the Cauchy problem 

cp'= vcp + e (cp + u)*, 91YEC = 0, cp' lyzc = a (3.2) 

where D is a parameter determined by the second of conditions (3.1). We seek a solution of 
this prcblem of the form 

cp = Cl (Y)V (II) + Cl (Y)U (Y) 

From (3.2) we have 

where the boundary condition at y=c was used for determining cl* and c,*. Usingthesecond 
boundary condition we obtain 

b 

c c 

(3.3) 

According to /21/ problem (3.1) has a unique solution, when parameter (L in (3.3) is single- 
valued. Frcm (3.3) we have for o 

a = (A,, - A,,,,) D (4 
b 

A,, = I( (b) s ‘Gy (3.4) 
B ’ 

e 
D (E) = uo’ - vu’, B = u (c) v (b) - u (c) I( (b) 

If e is fairly small, then cI-cl*-cI-c,*-a- e and rejecting in U smalls of order e 
we assume u to be v in the right-hand side of (3.4). Thus (I is uniquely determined, and by 
virtue of Theorem 1 in /21/ the problem has a unique solution. 

1. 

2. 

3. 

4. 

5. 
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